自己注意の類似性に導かれたグラフ畳み込みネットワークによる多種類の低グレードの神経膠腫分類研究

自己注意の類似性に導かれたグラフ畳み込みネットワークによる多種類の低グレードの神経膠腫分類研究

自己注意類似性に導かれたグラフ畳み込みネットワークを用いた多タイプ低グレード膠芽腫の分類 一、研究の背景 低グレード膠芽腫は一般的な悪性脳腫瘍であり、脳および脊髄のグリア細胞の癌化に起因します。膠芽腫は発症率が高く、再発率が高く、死亡率が高く、治癒率が低いという特徴があります。多タイプ低グレード膠芽腫を正確に分類することは、患者の予後において非常に重要です。診断において、医師は通常、磁気共鳴画像法(MRI)やコンピュータ断層撮影(CT)を用いて膠芽腫細胞の異クエン酸脱水素酵素(IDH)変異状態を分析します。 IDH変異状態は、野生型と変異型膠芽腫を区別する重要な指標です。従来は、生検や手術によって免疫組織化学や遺伝子シーケンシングを行い、IDH変異状態を特定していました。生検には一定のリスク...

リスク感受性の高いロボット制御のための探索ベースの自己注意モデル学習

自己注意メカニズムに基づいたリスク感受性ロボット制御の探討 研究背景 ロボット制御における運動学と動力学は、任務を正確に遂行するための重要な要素です。ほとんどのロボット制御スキームは、多様なモデルに依存して任務の最適化、スケジューリング、および優先順位制御を実現しています。しかし、伝統的なモデルの動的特性の計算は通常複雑であり、誤差が発生しやすいという問題があります。この問題を解決するために、機械学習や強化学習技術を使用してモデルを自動取得することが可能な代替案として現れました。しかし、実際のロボットシステムに直接適用する際には、急激な運動変化や望ましくない行動出力のリスクが存在します。 研究の出所 本論文はソウル国立大学およびローザンヌ連邦工科大学からのDongwook Kim、Sudon...