解釈可能なAIを利用した脳腫瘍検出と分類のためのビジョントランスフォーマー、アンサンブルモデル、および転移学習

近年、脳腫瘍の高発生率と致命性のため、迅速かつ正確に脳腫瘍を検出し分類することが特に重要になってきています。脳腫瘍には悪性と非悪性の二種類があり、その異常な成長は脳に長期的な損傷を与えます。磁気共鳴画像(MRI)は一般的な脳腫瘍の検出方法です。しかし、専門家による手作業でのMRI画像分析に頼ると結果が一致しないリスクがあり、さらに単に腫瘍を識別するだけでは不十分で、迅速に腫瘍の種類を特定して早期に治療を開始することも重要です。 研究背景 腫瘍検出の速度、信頼性、公正性を向上させるために、本研究ではVGG16、InceptionV3、VGG19、ResNet50、InceptionResNetV2、Xceptionなど、さまざまな深層学習(Deep Learning, DL)アーキテクチャを探...

EEG解読のための深層学習を用いたユークリッド整列の体系的評価

EEG解読におけるユークリッド整列と深層学習の系統的評価 背景紹介 脳波(EEG)信号は、非侵襲性、携帯性、低コストな収集などの利点から、脳コンピューターインターフェース(BCI)タスクで広く利用されています。しかし、EEG信号には低い信号対雑音比、電極位置の影響を受けやすい、空間分解能が低いなどの欠点があります。深層学習(DL)技術の進歩に伴い、この技術はBCI分野で優れた性能を示し、場合によっては従来の機械学習手法を上回っています。しかし、DLモデルには大量のデータが必要であるという主な障害があります。複数の被験者データを使った転移学習(Transfer Learning、TL)は、データ共有によってDLモデルをより効率的に訓練できます。ユークリッド整列(Euclidean Alignm...

構造強化型原型整列による教師なしクロスドメインノード分類

構造強化の原型アライメントによる教師なしドメイン適応ノード分類 序論 現代情報技術の発展に伴い、グラフニューラルネットワーク(Graph Neural Networks、GNNs)は複雑なネットワークのノード分類タスクにおいて顕著な成功を収めています。しかし、その一つの大きな課題は大量の高品質なラベルデータを必要とすることです。これはグラフ構造データに対して取得コストが高く、時間もかかります。したがって、豊富なラベルがあるグラフ(ソースドメイン)から知識を完全にラベルのないグラフ(ターゲットドメイン)に移す方法が重要な問題となっています。 研究背景と目的 著者のチームは浙江大学計算機科学学院、浙江省サービスロボット重点実験室、およびシンガポール国立大学計算機科学学院から来ています。彼らは構造...