多課題異種アンサンブル学習に基づく脳卒中患者における被験者間EEG分類

多課題異種アンサンブル学習に基づく脳卒中患者における被験者間EEG分類

背景紹介 運動イメージ(Motor Imagery, MI)は、実際の筋肉運動を行わずに想像によって活動を行うことを指します。このパラダイムは脳-コンピュータ・インターフェース(Brain-Computer Interface, BCI)に広く応用され、脳活動を外部装置の制御指令にデコードするために使用されます。特に、脳波(Electroencephalography, EEG)は相対的に安価で、携帯が容易であり、他の神経画像ツールより時間分解能が高いため、BCIに広く使用されています。さらに、このパラダイムは脳卒中患者の神経リハビリテーションに役立ちます。研究によると、ロボット支援の脳-コンピュータ・インターフェース訓練が脳卒中患者の運動リハビリ効果を向上させることができます(論文[5]お...

MI-EEGデコーディングのための注意メカニズムを備えた時間依存学習CNN

MI-EEGデコードにおける注意機構に基づく時間依存学習畳み込みニューラルネットワーク(CNN) 研究背景と問題提起 脳-機械インターフェース(Brain-Computer Interface, BCI)システムは、脳信号をリアルタイムで翻訳してコンピュータと通信する新たな手段を提供しています。近年、BCI技術は麻痺患者に対する補助や予防的なケアにおいて重要な役割を果たすようになりました。現在の多くのBCIシステムは、非侵襲的で比較的便利な脳波(EEG)信号記録に依存して脳活動を追跡しています。しかし、同じMI(運動想像)タスクの期間中でも、異なる時期に生じる異なるMI関連パターンの時間依存性特性はしばしば無視され、MI-EEGデコード性能が大きく制約されています。 論文の出典と著者情報 論...