基于效用和动态定位变换程序的三向决策方法在圆形q-rung orthopair模糊集中用于大型语言模型的排序和分级
学术背景 随着人工智能(AI)和自然语言处理(Natural Language Processing, NLP)的快速发展,大型语言模型(Large Language Models, LLMs)在学术界和工业界都取得了显著进展。然而,尽管LLMs在多个NLP任务中表现出色,但尚未有单一模型能够同时满足所有任务需求。这种多样化的任务需求和评估标准的复杂性,使得LLMs的评估成为一个多准则决策(Multi-Criteria Decision-Making, MCDM)问题。传统的MCDM方法虽然能够进行排名,但在处理不确定性、任务优先级和数据变异性等方面存在局限性,尤其是在处理二元数据时,难以有效进行分级。 为了解决这一问题,本文提出了一种基于效用和动态定位变换的三支决策(Three-Way D...