基于知识图谱推荐的生物医学关系提取

医学关系抽取与知识图谱推荐结合的研究报告 背景介绍 在医学领域,文献的爆炸式增长使得研究人员难以及时跟踪各自领域内的最新进展。从自然语言处理(NLP)领域来看,不断发展的自动化工具能够帮助识别和提取非结构化文本中的相关信息,这一任务被称为关系抽取(Relation Extraction,RE)。RE的主要目标是从文本中提取和分类医学实体之间的关系,增强我们对生物医学过程的理解。 目前,大多数尖端的医学RE系统使用深度学习方法,主要针对同类型实体间的关系,如基因和药物等实体。然而,这些系统大多仅限于从文本直接提取的信息,忽略了专门领域的知识库,如本体论(Ontology),这些本体论通常结构化为有向无环图(Directed Acyclic Graphs,DAG)。 另一方面,基于知识图谱(Kn...