尖峰扩散模型
脑启发的低能耗生成模型——Spiking Diffusion Models研究评述 背景概述 近年来,人工智能领域涌现出众多前沿技术,其中深度生成模型(Deep Generative Models, DGMs)通过生成图像、文本等数据表现出了卓越的能力。然而,这些生成模型通常依赖人工神经网络(Artificial Neural Networks, ANNs)作为骨干网络,其高度依赖算力和内存资源的特性使其在大规模应用中面临显著的能耗问题。同时,与人类大脑相比,ANNs的能耗效率远不及人类大脑的20瓦功率水平,这导致研究人员对更高能效的神经网络架构产生了兴趣。 与ANNs不同,脉冲神经网络(Spiking Neural Networks, SNNs)以大脑神经元的工作方式为启发,以事件驱动的方...