单细胞拷贝数变异与事件历史重建的SCICONE模型
肿瘤的发展过程中,基因组拷贝数变异(Copy Number Alterations, CNAs)是驱动肿瘤异质性和进化的重要因素。理解这些变异对于开发个性化的癌症诊断和治疗方法至关重要。单细胞测序技术提供了最高分辨率的拷贝数分析,能够深入到单个细胞水平。然而,低读深(low read-depth)的全基因组测序数据给拷贝数变异的检测带来了巨大的统计和计算挑战。现有的计算方法大多忽略了细胞之间的进化关系,导致检测结果不够准确。因此,开发一种能够结合细胞进化历史的拷贝数检测方法成为当前研究的迫切需求。 论文来源 本论文由ETH Zurich(瑞士联邦理工学院)和SIB Swiss Institute of Bioinformatics(瑞士生物信息学研究所)的研究团队共同完成,主要作者包括Jac...