在野外使用SAM学习检测新物种

研究论文报告:基于 SAM 的开放世界物体检测框架 背景介绍 随着生态系统监测的重要性不断提升,野生动植物及植物群体的监测已成为生态保护和农业发展的关键手段。这些监测工作包括估算种群数量、识别物种、研究物种行为以及分析植物病害或多样性。然而,传统的封闭世界物体检测模型通常训练于已标注的单一物种数据,难以泛化到新的物种分类。 当前的生态系统研究在数据和方法上存在诸多挑战,特别是标注数据的不足以及模型对新物种的适应能力有限。基于此,来自美国伊利诺伊大学香槟分校的 Garvita Allabadi、Ana Lucic、Yu-Xiong Wang 和 Vikram Adve 提出了一种面向开放世界的物体检测框架,利用视觉基础模型 Segment Anything Model(SAM),在无需标注新物...