双臂空间机器人有限时间自适应鲁棒轨迹跟踪控制研究

双臂空间机器人有限时间自适应鲁棒轨迹跟踪控制研究 研究背景与问题 随着空间技术的快速发展,空间机器人在在轨服务、卫星组装、航天器燃料补给等任务中扮演着越来越重要的角色。然而,空间机器人系统在执行任务时面临诸多挑战,特别是其基座执行器的摩擦非线性特性和外部时变扰动的不确定性,严重影响了系统的轨迹跟踪性能。传统的控制方法在处理这些问题时往往表现不足,尤其是在高精度和高动态性能要求的任务中。因此,如何有效地补偿这些非线性摩擦和外部扰动,提升空间机器人的轨迹跟踪能力,成为当前研究的热点问题。 本研究针对双臂空间机器人(Dual-Arm Space Robot, DSR)系统,提出了一种基于单框架控制力矩陀螺(Single Gimbaled Control Moment Gyroscopes, SGC...

基于强化学习实现的现实世界人形机器人行走

基于强化学习实现的现实世界人形机器人行走

基于强化学习实现的现实世界人形机器人行走 背景介绍 人形机器人在多样化环境中自主操作的潜力巨大,不仅可缓解工厂里的劳动力短缺,还能帮助居家老人并开拓新行星。尽管经典控制器在某些场景下显示出色的效果,但在新环境中的推广和适应性仍是一个重大挑战。为此,本文提出了一种完全基于学习的方法用于实际世界中的人形机器人运动控制。 研究动机 经典控制方法在实现稳定和鲁棒的运动控制方面有很大进展,但其适应性和通用性受限。而基于学习的方法由于能从多样化的模拟或实际环境中学习,逐渐受到更多关注。本文旨在通过使用强化学习训练一种基于Transformer网络的控制器,实现人形机器人在复杂环境中的运动控制。 作者与出版信息 本文由Ilija Radosavovic, Tete Xiao, Bike Zhang, Tr...