基于强化学习的共情反应生成框架

人工智能对话系统中的共情反应生成研究 学术背景 随着人工智能技术的快速发展,开放域对话系统(open-domain dialogue systems)逐渐成为研究热点。这类系统旨在与用户进行自然、流畅的对话,提供合理的回应。然而,尽管现有的对话系统在语言流畅性和连贯性方面取得了显著进展,但其在共情(empathy)能力上的不足仍然显著。共情是指理解他人经历和情感的能力,包括情感共情(affective empathy)和认知共情(cognitive empathy)。情感共情涉及对用户情感的反应,而认知共情则侧重于理解用户的情境。共情是人类交流的基本特征,对于构建拟人化的对话系统至关重要。 然而,现有的共情反应生成(empathetic response generation)方法主要依赖于...

基于概率神经网络的强化学习模型在预测控制无人水面艇中的高效应用

无人水面车辆(USV)的模型预测控制新方法:基于概率神经网络的MBRL框架 学术背景 无人水面车辆(Unmanned Surface Vehicles, USV)近年来在海洋科学领域迅速发展,广泛应用于海洋运输、环境监测、灾害救援等场景。然而,USV的控制系统仍然面临诸多挑战,尤其是在复杂海洋环境中应对外部干扰的能力。传统的模型自由强化学习(Model-Free Reinforcement Learning, MFRL)方法虽然在某些任务中表现良好,但其依赖大量数据和模拟训练,且缺乏对不确定环境的鲁棒性。为了解决这些问题,模型基础强化学习(Model-Based Reinforcement Learning, MBRL)方法应运而生。MBRL通过同时学习环境模型和优化控制策略,能够更高效地应...

混合环境中基于关系图学习的强化学习多智能体协作导航

多智能体混合环境协作导航研究:基于关系图学习的强化学习新方法 移动机器人技术正随着人工智能领域的发展迎来应用热潮,其中导航能力是移动机器人研究的核心热点之一。传统导航方法在面对动态环境、障碍物规避以及多机器人协作任务时,往往面临算法复杂度、计算资源消耗以及模型普适性的问题。针对这些问题,来自Central South University与Zhejiang University of Technology的研究团队提出了一种基于关系图注意力网络(Graph Attention Network, GAT)的新方法,称为GAR-CoNav,为混合环境中的多目标协作导航问题(Multi-Robot Cooperative Navigation Problem, MCNP)提供了新的解决方案。这篇发...

自适应复合固定时间强化学习优化的非线性系统控制及其在智能船舶自动驾驶上的应用

智能船舶自动驾驶的非线性固定时间强化学习优化控制研究 近年来,智能自动驾驶技术逐渐成为自动化控制领域的研究热点之一。在复杂的非线性系统中,优化控制策略的设计,尤其是在固定时间内实现系统稳定性和性能优化方面,是控制工程师和研究人员面临的重要挑战之一。然而,现有的固定时间控制理论在实现系统状态收敛时,往往忽略了资源利用效率和平衡问题,这可能导致过度补偿或欠补偿的现象,从而使系统的稳态误差增加。此外,对于如何在时间限定内实现非线性不确定性估计误差的最小化,相关研究依然较少。因此,本研究旨在提出一种自适应复合固定时间强化学习优化控制解决方案,进一步解决这一关键问题。 研究背景及目的 固定时间控制理论自提出以来,由于收敛时间不依赖于初始状态的特点,其应用得到了广泛关注。相比有限时间控制方法,固定时间控...

Q-Cogni:一种集成因果强化学习框架

科研动态分析报告:Q-Cogni——一种综合的因果强化学习框架 近年来,人工智能(Artificial Intelligence, AI)技术的快速发展促使研究人员在如何构建更高效、更可解释的强化学习(Reinforcement Learning, RL)系统方面进行了深入探索。强化学习因其模仿人类决策过程的能力,在自动化规划、导航、机器人控制和健康诊断等领域得到了广泛应用。然而,现有强化学习方法仍面临诸多挑战:大量样本需求、对环境建模的复杂性、低水平的决策可解释性以及因缺乏因果推理(Causal Inference)导致模型难以应对复杂动态环境。基于这些背景问题,Cristiano da Costa Cunha、Wei Liu、Tim French和Ajmal Mian团队提出了Q-Cog...

信息受限环境中的自模型自由学习与外部奖励学习对比研究

自模型自由学习与有外部奖励学习在信息受限环境中的对比:一种新的强化学习框架 近年来,随着网络和人工智能系统的发展,网络化学习机制受到显著的安全挑战。在强化学习(Reinforcement Learning, RL)领域,奖励信号丧失、数据包丢失以及故意的网络攻击已成为影响学习系统性能的重要障碍。针对这一问题,来自乔治亚理工学院的Prachi Pratyusha Sahoo(IEEE学生会员)和Kyriakos G. Vamvoudakis(IEEE高级会员)提出了一种依靠内部奖励信号的新型强化学习框架,称为“自模型无学习”(Self-Model-Free RL)。本文发表于2024年12月《IEEE Transactions on Artificial Intelligence》,展示了在奖...

具有Wiener和Poisson噪声的随机马尔可夫跳跃系统的最优控制:两种强化学习方法

基于Wiener和Poisson噪声的随机Markov跳跃系统的最优控制:两种强化学习方法 学术背景 在现代控制理论中,最优控制是一个非常重要的研究领域,其目标是在各种约束条件下为动态系统设计一个最优控制策略,以最小化给定的成本函数。对于随机系统,传统的最优控制方法通常需要系统的完整模型信息,这在实际应用中存在很大的局限性。近年来,强化学习(Reinforcement Learning, RL)作为一种无需系统模型的方法,逐渐成为解决最优控制问题的重要工具。RL通过直接从数据中学习,能够获得最优值函数和最优策略,并且通过策略迭代(Policy Iteration)方法可以不断改进性能。 随机Markov跳跃系统(Stochastic Markovian Jump Systems, SMJS)...

高通量筛选与强化学习开发新型香豆素衍生物用于鲍曼不动杆菌肺部感染

新型香豆素衍生物对肺部感染的治疗研究综述 背景 随着抗生素耐药性的不断增加,尤其是Acinetobacter baumannii (鲍曼不动杆菌) 对抗生素的耐药性问题,全世界的科研人员开始寻找新的抗菌药物。这种革兰氏阴性菌具备高度的生存能力和抗药能力,成为全球医院内感染的重要病原体。由于缺乏有效的疫苗和药物,开发新的低毒、高效的抗菌药物成为解决这一问题的迫切需求。香豆素基异环(Coumarin-based heterocycles)因其独特的生物活性,尤其是在抗菌领域的研究备受关注。 论文来源 这篇研究论文由来自中国不同研究机构的多位学者撰写,包括:西安大学化工学院、第四军医大学、成都西南战区总医院和淄博职业病防治医院等。论文发表于《Journal of Neuroimmune Pharm...

比较11个国家的经验和描述基础经济偏好

比较11个国家的经验和描述基础经济偏好 背景与动机 近年来的研究显示,人类在对奖励价值的编码过程中存在高度情境依赖性,这在某些情况下会导致次优决策。然而,这种计算限制是否是人类认知的普遍特征仍不清楚。在这项研究中,作者研究了来自11个国家(阿根廷、伊朗、俄罗斯、日本、中国、印度、以色列、智利、摩洛哥、法国和美国)的561名个体的行为,旨在探索奖励价值编码的情境依赖性是否是人类认知的一致特征。 研究来源 该研究由Hernán Anlló、Sophie Bavard、Fatimaezzahra Benmarrakchi、Darla Bonagura等多位学者合作完成,分别来自多个国际知名学术机构,参与团队包括巴黎高等师范学校、瓦瑟达大学等。研究结果发表于《Nature Human Behavio...

基于探索的自注意力模型学习在风险敏感机器人控制中的应用

基于自注意机制的风险敏感机器人控制探讨 研究背景 机器人控制中的运动学和动力学是确保任务精确完成的关键因素。大多数机器人控制方案依赖于各种模型来实现任务优化、调度和优先级控制。然而,传统模型的动态特征计算通常复杂且容易产生误差。为了解决这个问题,通过机器学习以及强化学习技术来自动获取模型成为一种可行的替代方案。然而,直接应用于实际的机器人系统中,这种方法存在急剧的运动变化和非期望的行为输出的风险。 研究来源 本文由Dongwook Kim、Sudong Lee、Tae Hwa Hong和Yong-Lae Park撰写,作者分别来自首尔国立大学和洛桑联邦理工学院。该研究发表在2023年的npj Robotics杂志上。 研究内容 研究流程 本文提出了一种在线模型更新算法,直接应用于实际机器人系...