通过空间-频率线索挖掘方法实现低光照RGB-T场景中的显著目标检测

通过空间-频率线索挖掘方法实现低光照RGB-T场景中的显著目标检测

通过空间-频率线索挖掘方法实现低光照RGB-T场景中的显著目标检测 显著目标检测(Salient Object Detection, SOD)在计算机视觉领域具有重要地位,其主要任务是在图像中识别出最具视觉吸引力的区域或物体。尽管在过去几十年中,SOD模型在正常光照环境中取得了一定进展,但在低光环境下仍面临严峻挑战。在低光环境下,由于光子不足,导致图像细节缺失,严重影响了SOD的性能。而这种挑战在智能监控、自动驾驶等实际应用中显得尤为突出。 近几年来,RGB-T(可见光和热红外图像)系统因其在光线不足条件下对热红外不变性的特点,引起了越来越多研究人员的关注。借助RGB-T图像,研究人员开发了一些SOD模型,通过融合可见光和热红外线索,在一定程度上缓解了低光环境下的目标检测问题。然而,这些现有...