卷积神经网络中归因图可靠性的扰动评估方法

深度学习解释性研究:基于扰动的归因图评估方法 背景和研究动机 随着深度学习模型在各种任务中取得显著成功,人们越来越关注这些模型的解释性和透明性。然而,尽管模型在准确性上表现卓越,其决策过程的可解释性仍然存在很大不足。这种不足限制了模型在实际应用中的推广,因为许多场景需要模型不仅能提供准确的预测,还需具备鲁棒性、不确定性估计以及对决策过程的直观解释能力。 在计算机视觉领域,归因方法(Attribution Methods)被广泛应用于神经网络的解释性研究。这些方法通过生成归因图(Attribution Maps,AMs),显示输入图像中哪些区域对模型的决策贡献最大。然而,由于归因图的定性特性,如何定量评估这些图的有效性仍是一个未解决的问题。本研究旨在解决归因图评估中面临的可靠性和一致性问题,为...