基于多分辨率信号小波网络的语音情感识别研究
多分辨率信号小波网络在语音情感识别中的应用:SigWavNet 学术背景 语音情感识别(Speech Emotion Recognition, SER)在人机交互和心理学评估中扮演着重要角色。它通过分析语音信号来识别说话者的情感状态,广泛应用于紧急呼叫中心、健康护理和虚拟AI助手等领域。然而,尽管该领域取得了显著进展,系统复杂性、特征区分度不足以及噪声干扰等问题仍然存在。为了解决这些挑战,来自University of Québec、Concordia University和University of Québec at Montréal的研究团队提出了一种新的端到端深度学习框架——SigWavNet,直接从语音波形信号中提取有意义的特征,并通过多分辨率分析提升情感识别的准确性。 论文来源 ...