Dimond: 通过深度学习优化扩散模型的研究

Dimond: 通过深度学习优化扩散模型的研究

Dimond: 通过深度学习优化扩散模型的研究 学术背景 在脑科学和临床应用中,扩散磁共振成像(Diffusion Magnetic Resonance Imaging, dMRI)是一种用于非侵入性绘制脑组织微观结构和神经联通性的重要工具。然而,准确估算扩散信号模型参数的计算成本较高,同时易受到图像噪声的影响。现有的多种基于深度学习的有监督估算方法展示了其在提高效率和性能上的潜力,但这些方法通常需要额外的训练数据,并存在泛化性不足的问题。 论文来源 此研究由Zihan Li、Ziyu Li、Berkin Bilgic、Hong-Hsi Lee、Kui Ying、Susie Y. Huang、Hongen Liao和Qiyuan Tian(通讯作者)合作完成,论文发表在《Advanced S...

利用生成扩散模型合成拉格朗日湍流

当前,对于湍流中被流体所携带微粒的统计和几何学性质的研究存在重大挑战。尽管过去30年来在理论、数值模拟和实验方面做出了卓越的努力,但目前仍然缺乏能够真实再现湍流微粒轨迹统计和拓扑特性的模型。本研究提出了一种基于最新扩散模型(diffusion model)的机器学习方法,可以生成三维高雷诺数湍流中单个微粒轨迹,从而绕过直接数值模拟或实验获取可靠拉格朗日数据的需求。 论文信息: 本文作者来自罗马大学等机构,发表于2024年4月的《自然机器智能》(Nature Machine Intelligence)期刊。 研究方法: (a) 研究流程 该研究首先利用直接数值模拟(DNS)生成三维纳维-斯托克斯方程组的高雷诺数湍流场,并追踪大量(327,680条)拉格朗日微粒轨迹,构建高质量的训练数据集。然后...