人工智能驱动的决策模型在分散式能源存储投资中的应用

学术背景 随着全球能源结构向可再生能源转型,分散式能源存储(decentralized energy storage)的重要性日益凸显。与传统的集中式能源存储系统不同,分散式能源存储将能源生产和存储过程本地化,减少了大规模系统故障的风险,并提高了能源供应的连续性和灵活性。然而,分散式能源存储项目的复杂性和资源有限性使得企业难以确定战略优先级,这可能导致投资失败或效率低下。 为了解决这一问题,作者们提出了一种基于人工智能(AI)驱动的决策模型,旨在为分散式能源存储投资提供有效的战略指导。该研究不仅关注如何优化投资决策,还通过引入信息增益(information gain)和大规模专家选择技术,提高了决策的一致性和效率。 论文来源 这篇论文由Gang Kou、Hasan Dinçer、Edanu...

人工智能驱动的云计算作业调度:全面综述

学术背景 随着云计算技术的快速发展,动态和异构的云环境对高效的作业调度需求日益增长。传统的调度算法在简单系统中表现良好,但在现代复杂的云基础设施中已无法满足需求。云环境的资源异构性、能源消耗和实时适应性等问题,促使研究者探索基于人工智能(AI)的解决方案。AI驱动的作业调度技术通过机器学习、优化技术、启发式技术和混合AI模型,提供了更高的适应性、可扩展性和能源效率。本文旨在全面回顾AI驱动的作业调度技术,分析现有方法的优缺点,并探讨如何通过AI克服传统算法的不足。 论文来源 本文由Yousef Sanjalawe、Salam Al-E’mari、Salam Fraihat和Sharif Makhadmeh共同撰写,发表在《Artificial Intelligence Review》期刊上,...