用于加权网络随机化的模拟退火算法
基于模拟退火算法的加权网络随机化研究 背景介绍 在神经科学领域,连接组学(connectomics) 是研究大脑神经网络结构和功能的重要分支。随着现代成像技术的发展,研究人员能够获取到大量的生物意义丰富的边权重(edge weights),这些权重信息对于理解大脑网络的组织和功能至关重要。然而,尽管加权网络分析在连接组学中日益普及,现有的网络随机化模型大多仅保留二元节点度(binary node degree),而忽略了边权重的重要性。这导致在评估网络特征的显著性时,可能无法准确反映出权重信息的影响。 为了解决这一问题,来自McGill University、University of Minnesota等机构的研究团队提出了一种基于模拟退火算法(simulated annealing al...