心智理论能力预测机器人注视对物品偏好的影响

学术背景 在人类社交互动中,目光(gaze)是传递信息的重要方式之一。研究表明,人类的目光能够影响他人的注意力、认知,甚至偏好。例如,当一个人注视某个物体时,观察者会倾向于认为该物体对注视者具有吸引力,进而影响观察者自身的偏好形成。然而,随着机器人技术的快速发展,机器人也逐渐具备了类似人类的目光行为。那么,机器人的目光是否能够像人类目光一样影响他人的偏好?这一问题不仅涉及人类对机器人行为的认知,还关系到未来人机互动(human-robot interaction, HRI)的设计与优化。 此外,心智理论(Theory of Mind, ToM)是理解他人心理状态的核心能力,包括推断他人的意图、信念和情感。ToM在人类社交互动中扮演着重要角色,但其在机器人目光效应中的作用尚未被充分研究。因此,...

深度学习模型揭示语义饱和的机制

深度学习模型揭示语义饱和的机制

深度学习模型揭示语义饱和机制 语义饱和(semantic satiation),即一个词或短语在被重复很多次后失去意义这一现象,是一种众所周知的心理学现象。然而,导致这一机制的微观神经计算原理仍然未知。本文使用连续耦合神经网络(continuous coupled neural network, CCNN)建立深度学习模型,研究语义饱和的机制,并用神经元成分精确描述这一过程。研究结果表明,从介观角度来看,语义饱和可能是一个自下而上的过程,与现有的宏观心理学研究认为语义饱和是一个自上而下的过程不同,本文的模拟采用与经典心理学实验类似的实验范式,观察到相似的结果。语义目标的饱和类似于本文网络模型用于物体识别的学习过程,依赖于对象的连续学习和切换,神经耦合的增强或削弱影响饱和。综上,神经和网络机制...