基于课程引导的自监督动态异质网络表示学习
学术背景 在现实世界中,网络数据(如社交网络、引文网络等)通常包含多种类型的节点和边,并且这些网络结构会随着时间的推移而动态变化。为了更好地分析这些复杂的网络,研究者们提出了网络嵌入(network embedding)技术,旨在将网络中的节点和边表示为固定长度的向量,以便于后续的分析任务,如节点分类、链接预测等。然而,传统的网络嵌入模型在处理动态异质网络(dynamic heterogeneous networks)时面临诸多挑战,尤其是如何有效地捕捉网络结构的动态变化和异质性。 近年来,Transformer模型在自然语言处理(NLP)领域取得了显著的成功,但其在网络嵌入中的应用仍处于起步阶段。Transformer模型通过自注意力机制(self-attention)能够捕捉序列数据中的...