基于课程引导的自监督动态异质网络表示学习

学术背景 在现实世界中,网络数据(如社交网络、引文网络等)通常包含多种类型的节点和边,并且这些网络结构会随着时间的推移而动态变化。为了更好地分析这些复杂的网络,研究者们提出了网络嵌入(network embedding)技术,旨在将网络中的节点和边表示为固定长度的向量,以便于后续的分析任务,如节点分类、链接预测等。然而,传统的网络嵌入模型在处理动态异质网络(dynamic heterogeneous networks)时面临诸多挑战,尤其是如何有效地捕捉网络结构的动态变化和异质性。 近年来,Transformer模型在自然语言处理(NLP)领域取得了显著的成功,但其在网络嵌入中的应用仍处于起步阶段。Transformer模型通过自注意力机制(self-attention)能够捕捉序列数据中的...

解释性Transformer模型结合PET与表格数据对滤泡性淋巴瘤的病理分级与预后:一项多机构数字活检研究

用PET影像与临床数据融合的Transformer模型:预测滤泡型淋巴瘤病理分级与预后的一项多中心数字活检研究 学术背景 滤泡型淋巴瘤(Follicular Lymphoma, FL)是西方国家最常见的惰性非霍奇金淋巴瘤,约占新诊断非霍奇金淋巴瘤的30%。根据世界卫生组织(WHO)的分类,滤泡型淋巴瘤分为三个病理等级(1-3级),等级的划分主要依据每高倍视野(High-Power Field, HPF)中的中心母细胞(Centroblasts)数量。然而,3级又进一步细分为3a级和3b级,其中3b级具有更具侵略性的生物学行为,患者预后较差,其治疗策略与弥漫大B细胞淋巴瘤(Diffuse Large B-Cell Lymphoma, DLBCL)相似。相较而言,1-2级患者通常病情进展缓慢,部...