高斯过程概率多实例学习用于CT颅内出血检测的双曲正切逻辑函数表示
人工智能领域一直以来都存在着一个”弱监督学习”的问题,即在训练数据中,只有部分标记是可观测的,而其余的标记则是未知的。多实例学习(Multiple Instance Learning,简称MIL)就是解决这一问题的一种范式。在MIL中,训练数据被分组为若干”袋”(bag),每个袋包含多个实例(instance)。我们只能观测到每个袋的标记,而无法获知每个实例的具体标记。MIL的目标是基于袋的标记,预测新袋及其包含实例的标记。 MIL范式在诸多科学领域得到了广泛应用,尤其在医学影像领域表现卓著。此文关注的是一个实际的医学问题——颅内出血(ICH)检测。在这一问题中,一个CT扫描被视为一个袋,而扫描的每个切片则是一个实例。如果至少有一个切片显示出血证据,那么整个扫描就被标记为阳性(患病);否则为...