基于模糊粗糙迭代计算模型的单细胞RNA-seq数据基因选择

背景介绍 单细胞RNA测序(single cell RNA-seq, scRNA-seq)技术近年来在生物医学研究中得到了广泛应用,它能够揭示单个细胞中基因表达的异质性,为理解细胞类型、细胞状态以及疾病机制提供了重要工具。然而,scRNA-seq数据具有小样本、高维度、高噪声等特点,这使得在聚类和分类之前进行基因选择成为必要步骤。传统的统计分析和机器学习方法在处理高维数据时往往面临“维度灾难”问题,因此,如何有效地从海量基因中选择出具有代表性的基因,成为当前研究的热点之一。 为了解决这一问题,本文作者提出了一种基于模糊粗糙迭代计算模型(Fuzzy Rough Iterative Computation Model, FRIC-Model)的基因选择方法。该方法通过引入模糊对称关系(fuzzy...

加速支持张量机的顺序安全静态和动态筛选规则

在数据获取技术的不断发展下,获取大量包含多种特征的高维数据已经变得十分容易,比如图像、视觉等。然而,传统的机器学习方法尤其是基于向量和矩阵的方法,面临着维度灾难、计算复杂度增加以及模型过拟合等挑战。为了解决这些问题,张量作为一种多维数组表示方式,比向量和矩阵更具灵活性,能够更好地处理高维数据。因此,基于张量的机器学习方法逐渐成为学术研究的焦点。 支持张量机 (Support Tensor Machine, STM) 是一种有效的张量分类策略,受到支持向量机 (Support Vector Machine, SVM) 和交替投影技术以及多线性代数操作的启发。STM 旨在处理复杂的张量数据,通过寻找具有最大间隔的两类分类超平面,在分类任务中表现出优异的性能。尽管最近基于不同张量分解方法的一系列改...