A2DM模型:基于时间-频率域融合的EEG伪迹去除增强方法

学术背景 脑电图(Electroencephalogram, EEG)是研究大脑活动的重要工具,广泛应用于神经科学、临床诊断和脑机接口等领域。然而,EEG信号在采集过程中容易受到多种伪迹(artifacts)的干扰,例如眼电伪迹(Electrooculography, EOG)和肌电伪迹(Electromyography, EMG)。这些伪迹会显著降低EEG信号的质量,进而影响后续的分析和应用。尽管已有一些方法用于去除单一类型的伪迹,但在处理多种伪迹同时存在的情况时,现有方法往往表现不佳。因此,开发一种能够统一去除多种伪迹的模型成为当前研究的重要挑战。 Haoran Li等人针对这一问题,提出了一种基于伪迹表示的EEG去噪模型,称为A2DM(Artifact-Aware Denoising ...