グラフベースのアクティブラーニングを用いた最適な疾病監視に向けて

グラフベースのアクティブラーニングを用いた最適な疾病監視に向けて 学術的背景 グローバル化の加速に伴い、感染症の伝播速度と範囲が著しく増加しており、感染症の伝播を効果的に監視・制御することが公衆衛生分野の重要な課題となっています。従来の疾病監視方法は、大規模な検査と隔離措置に依存することが一般的ですが、資源が限られている状況下では、情報を最大化するために検査資源を最適に配分することが政策立案者にとっての課題となっています。特に資源が乏しい地域では、検査資源の不均等な配分が感染症の持続的な蔓延を引き起こす可能性があります。そのため、限られた資源の下で監視効果を最大化する戦略を開発することが重要です。 本研究では、グラフ構造(graph-based)とアクティブラーニング(active lear...

マルチドメイン適応のためのアクティブ動的加重

背景紹介 多源無監督ドメイン適応(Multi-source Unsupervised Domain Adaptation, MUDA)は、複数のラベル付きソースドメインからラベルなしのターゲットドメインへの知識転移を目的としています。しかし、既存の方法はソースドメインとターゲットドメインの分布の違いを処理する際に、異なる領域間の分布の混合や複数の単一ソースモデルの加重融合を単純に求めるだけで、ソースドメインおよびターゲットドメイン間のグローバルおよびローカル特徴分布の差異を深く考察していません。そこで、この問題を解決するために、本研究では新しい多源ドメイン適応の能動的動的加重(Active Dynamic Weighting, ADW)方法を提案します。 論文の出所 本研究は西安理工大学の劉...