低ランクテンソル空間におけるグローバルプロンプトの学習と異種フェデレーテッドラーニング

学術的背景 人工知能(AI)モデルの複雑化とデータプライバシー保護の必要性が高まる中、連邦学習(Federated Learning, FL)は分散型機械学習のパラダイムとして研究の焦点となっています。連邦学習は、複数のクライアントがローカルデータを共有することなく、グローバルモデルを協調的に訓練することを可能にし、データプライバシーを保護しながらモデルの汎化能力を向上させます。しかし、連邦学習は実際の応用において以下の3つの課題に直面しています:1)モデルパラメータが多すぎるために通信負荷が大きい、2)非独立同分布(Non-IID)データによりグローバルモデルの性能が低下する、3)モデルの異質性により従来の連邦集約方法が機能しない。 これらの問題を解決するため、本論文ではFedGPTという...

フェデレーテッドローカル因果構造学習アルゴリズム

データプライバシ保護と因果学習の交差点:フェデレーテッドラーニングに基づく局所的因果構造学習のブレークスルー ビッグデータと人工知能が急速に発展する中で、医療や金融といった敏感な分野では、データのプライバシを保障しつつ効率的に因果関係を分析・推論する方法が学術界および産業界の重要な課題となっています。「Federated Local Causal Structure Learning」(連合局所因果構造学習)という論文は、この重要な課題に直接取り組み、FedLCSというアルゴリズムを導入しました。このアルゴリズムは、フェデレーテッドラーニング(Federated Learning)環境下で局所的因果構造を学習するために設計されており、データプライバシを確保しながら因果推論を実現する問題を革新...

水平フェデレーテッドラーニングのためのコスト効率の良い特徴選択

水平フェデレーション学習における効果的な特徴選択の新しいアプローチ 近年、フェデレーション学習(Federated Learning, FL)はデータプライバシー保護型の分散機械学習手法として注目を集めています。複数のクライアント間でモデルを協調的に学習する際に情報共有が必要とされる一方で、クライアントはローカルデータを一切共有しないため、全体モデルの性能を保証する新しいアプローチが求められています。特に、水平フェデレーション学習(Horizontal Federated Learning, HFL)では、全てのクライアントが同じ特徴空間を共有しますが、個々のサンプルデータは異なるため、大量の冗長特徴や次元性の呪い(Curse of Dimensionality)によりモデルの性能と学習効率...

医療画像分割のためのモデルヘテロジニアス半教師付きフェデレーテッドラーニング

医療画像分割のためのモデルヘテロジニアス半教師付きフェデレーテッドラーニング

医学画像分割のためのモデル異質半教師付きフェデレーテッドラーニング 背景紹介 医学画像分割は臨床診断において非常に重要な役割を果たし、医師が病状を識別し分析するのを助けます。しかし、このタスクは通常、敏感なデータ、プライバシー問題、高価なアノテーションコストなどの課題に直面しています。現在の研究は主に個別の協力訓練医療分割システムに焦点を当てていますが、分割アノテーションを取得することが時間がかかり労力を要するという点を見落としています。どのようにしてローカルモデルの個別化を維持しながら、アノテーションコストと分割性能をバランスさせるかが重要な研究方向となっています。そこで、本研究は新たなモデル異質半教師付きフェデレーテッドラーニングフレームワークを提案します。 論文出典 この論文は「Mod...