医療画像分割のためのモデルヘテロジニアス半教師付きフェデレーテッドラーニング

医療画像分割のためのモデルヘテロジニアス半教師付きフェデレーテッドラーニング

医学画像分割のためのモデル異質半教師付きフェデレーテッドラーニング 背景紹介 医学画像分割は臨床診断において非常に重要な役割を果たし、医師が病状を識別し分析するのを助けます。しかし、このタスクは通常、敏感なデータ、プライバシー問題、高価なアノテーションコストなどの課題に直面しています。現在の研究は主に個別の協力訓練医療分割システムに焦点を当てていますが、分割アノテーションを取得することが時間がかかり労力を要するという点を見落としています。どのようにしてローカルモデルの個別化を維持しながら、アノテーションコストと分割性能をバランスさせるかが重要な研究方向となっています。そこで、本研究は新たなモデル異質半教師付きフェデレーテッドラーニングフレームワークを提案します。 論文出典 この論文は「Mod...