医療画像分割のためのモデルヘテロジニアス半教師付きフェデレーテッドラーニング

医療画像分割のためのモデルヘテロジニアス半教師付きフェデレーテッドラーニング

医学画像分割のためのモデル異質半教師付きフェデレーテッドラーニング 背景紹介 医学画像分割は臨床診断において非常に重要な役割を果たし、医師が病状を識別し分析するのを助けます。しかし、このタスクは通常、敏感なデータ、プライバシー問題、高価なアノテーションコストなどの課題に直面しています。現在の研究は主に個別の協力訓練医療分割システムに焦点を当てていますが、分割アノテーションを取得することが時間がかかり労力を要するという点を見落としています。どのようにしてローカルモデルの個別化を維持しながら、アノテーションコストと分割性能をバランスさせるかが重要な研究方向となっています。そこで、本研究は新たなモデル異質半教師付きフェデレーテッドラーニングフレームワークを提案します。 論文出典 この論文は「Mod...

超音波動画における半教師付き甲状腺結節検出

超音波動画における半教師付き甲状腺結節検出

半监督超声视频中甲状腺结节检测的研究报告 研究背景 甲状腺结节は一般的な甲状腺疾患であり、甲状腺結節の早期スクリーニングと診断は通常、超音波検査に依存しています。超音波検査は、甲状腺結節、乳がん、動脈プラークなど、さまざまな疾患を検出するための一般的な非侵襲的検査方法です。しかし、甲状腺結節は超音波画像において解像度が低く、病変の形態が不規則かつ複雑であるため、超音波検査は高度に放射線科医の経験に依存しており、誤診や見落としが発生しやすいです。特に発展途上地域や国ではこれが顕著です。したがって、コンピューター支援診断(Computer-Aided Diagnosis, CAD)に基づく自動化された正確な方法の開発が特に重要です。 近年、深層学習技術が超音波画像のコンピューター支援診断に導入さ...