EPICPred:注意ベースのマルチインスタンス学習を用いたエピトープ結合TCR駆動型表現型の予測

T細胞受容体(TCR)は適応免疫システムにおいて重要な役割を果たしており、特定の抗原エピトープ(epitope)に結合することで病原体を認識します。TCRとエピトープ間の相互作用を理解することは、免疫応答の生物学的メカニズムを解明し、T細胞を介した免疫療法を開発する上で極めて重要です。しかし、TCRのCDR3領域がエピトープ認識において重要であることは広く認められているものの、特定の疾患や表現型に関連するTCR-エピトープ相互作用を正確に予測する方法は依然として課題となっています。この問題に対処するため、研究者たちはEpicPredを開発しました。これは注意メカニズムに基づく多インスタンス学習(Multiple Instance Learning, MIL)モデルであり、がんやCOVID-1...

ロジスティック関数の双曲線正接表現:CTくも膜下出血検出のための確率的マルチインスタンス学習への適用

人工知能分野には長年にわたって「弱教師あり学習」の問題がありました。つまり、訓練データにおいて、一部分のラベルのみが観測可能で、残りのラベルは未知です。多インスタンス学習(Multiple Instance Learning、略してMIL)は、この問題を解決する1つのパラダイムです。MILでは、訓練データがいくつかの「バッグ」(bag)に分けられており、各バッグには複数のインスタンス(instance)が含まれています。私たちはバッグのラベルのみを観測できますが、個々のインスタンスのラベルを知ることはできません。MILの目標は、バッグのラベルに基づいて、新しいバッグとそれに含まれるインスタンスのラベルを予測することです。 MILパラダイムは様々な科学分野で広く応用されており、特に医療画像分野...