ウェーブレットベースの時間-スペクトル-注意相関係数による運動想像EEG分類
脑機インターフェース(Brain-Computer Interface, BCI)技術は近年急速に発展しており、末梢神経や筋肉を介さず、大脳を直接制御する先端技術として注目されています。特に運動イメージ(Motor Imagery, MI)脳波(Electroencephalography, EEG)の応用において、BCI技術は大きな可能性を示しています。MI-EEG信号を分析することで、身体障害や神経筋退化の患者の生活の質を向上させる手助けが可能です。しかし、個人間の差異や大脳活動の安定性、低信号雑音比(Signal-to-Noise Ratio, SNR)などの要因により、複雑なEEG信号から有効な特徴を抽出し、MI-EEG分類システムの精度を向上させることは依然として大きな課題となって...