ファジィラフ反復計算モデルによる単細胞RNA-seqデータの遺伝子選択

背景紹介 単細胞RNAシーケンス(single cell RNA-seq, scRNA-seq)技術は、近年、生物医学研究において広く利用されています。この技術は、単一細胞における遺伝子発現の異質性を明らかにし、細胞タイプ、細胞状態、および疾患メカニズムの理解に重要なツールを提供します。しかし、scRNA-seqデータは、サンプルサイズが小さく、高次元で、ノイズが多いという特徴を持っており、クラスタリングや分類の前に遺伝子選択を行うことが必要です。従来の統計分析や機械学習手法は、高次元データを扱う際に「次元の呪い」に直面することが多いため、膨大な遺伝子から代表的な遺伝子を効果的に選択する方法が、現在の研究の焦点の一つとなっています。 この問題を解決するため、本論文の著者らは、ファジィラフ反復...

サポートテンソルマシンの加速のための逐次安全静的および動的スクリーニングルール

在データ取得技術の絶え間ない発展によって、多様な特徴を含む大量の高次元データを取得することが非常に容易になっています。例えば、画像やビジュアルデータなどがそうです。しかし、従来の機械学習方法、特にベクトルや行列に基づく手法は、次元の災害、計算の複雑度の増加、およびモデルの過適合といった課題に直面しています。これらの問題を解決するために、テンソルという多次元配列の表現方法がベクトルや行列よりも柔軟性が高く、高次元データをうまく処理できるため、テンソルに基づく機械学習手法が学術研究の焦点となっています。 サポートテンソルマシン (Support Tensor Machine, STM) は効果的なテンソル分類手法であり、サポートベクトルマシン (Support Vector Machine, S...