GutBugDB:ヒト腸内マイクロバイオームを介した生物および異生物分子の生物変換を予測するウェブリソース

近年、ヒト腸内細菌叢(Human Gut Microbiota, HGM)が薬物や栄養素の代謝において重要な役割を果たすことが認識されるようになってきました。腸内細菌叢は、経口薬の生物学的利用能に影響を与えるだけでなく、その代謝酵素を介して薬物や生物活性分子の生体変換(biotransformation)に関与し、薬物の薬物動態や薬力学特性に影響を及ぼします。しかし、腸内細菌叢の複雑さや個人間の差異により、特定の微生物が薬物や栄養素の代謝に果たす具体的な役割を特定することは依然として大きな課題です。この問題を解決するため、研究者たちはGutBugDBを開発しました。これは、ヒト腸内細菌叢が媒介する生物および異生物質(xenobiotic)分子の生体変換を予測するためのオープンアクセスのデジタ...

GCLink:遺伝子調節ネットワーク推論のためのグラフコントラストリンク予測フレームワーク

研究背景 遺伝子制御ネットワーク(Gene Regulatory Networks, GRNs)は、細胞内の複雑な生物学的プロセスを理解するための重要なツールです。それは転写因子(Transcription Factors, TFs)と標的遺伝子間の相互作用を明らかにし、遺伝子の転写プロセスを制御し、細胞の挙動を調節します。単細胞RNAシークエンシング(single-cell RNA-sequencing, scRNA-seq)技術の発展により、研究者は単細胞解像度で遺伝子発現データを取得できるようになり、これがGRNsの推論に前例のない機会を提供しています。しかし、scRNA-seqデータのスパース性と高い変動性は、GRNsの推論に大きな課題をもたらしています。 現存のGRN推論手法は主に...

機械学習ベースの試験シミュレーションを用いた腫瘍学試験結果の現実世界患者への一般化可能性の評価

機械学習に基づく腫瘍臨床試験結果の一般化性評価に関する研究 学術的背景 ランダム化比較試験(Randomized Controlled Trials, RCTs)は抗がん薬の有効性を評価するためのゴールドスタンダードですが、その結果はしばしば現実世界の腫瘍患者に直接適用することが難しいです。RCTsでは通常、厳格な登録基準が採用され、研究対象となる集団と現実世界の腫瘍患者集団との間に大きな差異が生じます。さらに、RCTsにおいて患者の予後リスクに関連した選択バイアスが存在する可能性があり、これが試験結果の一般化性をさらに制限しています。この問題を解決するために、研究者たちはTrialTranslatorというフレームワークを開発しました。これは機械学習モデルを使用して現実世界の腫瘍患者をリス...

短期運動タスクに基づくパーキンソン病状態分類のためのマルチスケールおよびマルチレベル特徴評価フレームワーク

学術的背景 パーキンソン病(Parkinson’s Disease, PD)は、65歳以上の人々に主に影響を与える第二に一般的な慢性神経変性疾患です。世界人口の高齢化が進むにつれて、パーキンソン病の有病率は2015年の約700万人から2040年には約1300万人に増加すると予測されています。現在、パーキンソン病の診断は主に臨床的な質問票や運動日記に依存しており、これらの方法は時間がかかり、大きな主観的な偏りがあります。近年、ウェアラブル技術と機械学習手法の組み合わせにより、研究者たちは運動症状を定量化することによってパーキンソン病の診断を支援する可能性を探り始めました。しかし、これらの技術の有効性は環境設定の影響を受けやすく、現実世界での広範な応用は困難です。したがって、本研究では短期間の運...

PICUに入院した小児の心拍数と体温の関係 - 機械学習アプローチ

小児集中治療室における心拍数と体温の関係に関する機械学習研究 学術的背景 集中治療室(PICU)において、心拍数(HR)と体温(BT)は患者の生理状態を反映する重要な臨床指標です。成人における心拍数と体温の関係は広く研究されていますが、特にPICUのようなハイリスク環境での小児群、特に0歳から18歳までの年齢層における研究は依然として限られています。小児患者の生理的特徴は成人とは大きく異なり、年齢とともに心拍数が減少し、体温の変化が心拍数に影響を与えることが知られています。しかし、従来の線形モデルでは、異なる体温範囲や年齢層で心拍数を予測する際に制約があり、しばしば過小評価や過大評価が生じます。したがって、心拍数、体温、年齢間の複雑な関係を探ることは、PICUにおける臨床意思決定の改善に重要...

視覚的道路シーンを用いたドライバーストレスの推定

視覚的道路シーンに基づくドライバーのストレス推定に関する研究 学術的背景 ドライバーのストレスは、交通事故、負傷、死亡の重要な要因です。研究によると、94%の交通事故はドライバーに関連しており、その中でも注意力散漫、内外の気晴らし、速度制御の不適切さなどがすべてドライバーのストレスと密接に関連しています。したがって、ドライバーのストレス状態を特定し管理することは、運転体験と安全性を向上させるために非常に重要です。しかし、既存のドライバーストレス認識手法は主に生理データ(心拍数、皮膚電気活動など)や車両操作データ(ハンドルやペダルの操作)に依存しており、これらの方法は通常ウェアラブルデバイスが必要であったり、運転環境全体を考慮する能力が不足しています。これに対して、視覚的道路シーンの分析は、非...

機械学習と確認的因子分析により、ブプレノルフィンが雄雌肥満C57BL/6Jマウスの運動および不安様行動を変化させることが示される

近年、世界的な薬物乱用、特にオピオイドの乱用の増加に伴い、科学者たちはこれらの薬物の神経行動学的影響にますます注目しています。その中でも、ブプレノルフィン(Buprenorphine)はオピオイド系薬物として、オピオイド依存症の治療に広く使用されています。しかし、ブプレノルフィンは鎮痛や依存症治療の効果だけでなく、不安症状に対して一定の臨床的管理効果があるとも報告されています。ただし、不安は人間において非常に普遍的な疾患である一方、潜在的な心理的構築として直接測定することが難しいため、特に動物モデルではその評価が困難です。そこで、本研究では、機械学習技術と確認的因子分析(Confirmatory Factor Analysis, CFA)を組み合わせて、ブプレノルフィンがC57BL/6Jマウ...

遺伝子型-表現型ダイナミクスのマッピングのための多モーダル学習

多モーダル学習による遺伝子型と表現型の動的関係の解明 背景紹介 遺伝子型と表現型の複雑な関係は、生物学分野の核心的な問題の一つである。遺伝子型(genotype)は生物体の遺伝情報を指し、表現型(phenotype)はこれらの遺伝情報が特定の環境下でどのように表れるかを指す。1909年にWilhelm Johannsenがこれら二つの用語を提唱し、その関係を定量化しようと試みたが、一世紀以上経った現在でも、遺伝子型がどのように複雑な遺伝子発現パターンを通じて表現型を形作るかを正確に記述することはできていない。近年、単一細胞RNAシーケンシング(single-cell RNA sequencing, scRNA-seq)などの技術の発展により、細胞解像度で遺伝子発現の複雑なダイナミクスを観察す...

マルチタスク学習による分子電子構造の結合クラスター精度への接近

機械学習が量子化学を支援:カップリングクラスタ精度に迫る分子電子構造予測 学術的背景 物理学、化学、材料科学の分野において、計算方法はさまざまな物理現象の背後にあるメカニズムを明らかにし、材料設計を加速するための重要なツールです。しかし、量子化学計算(特に電子構造計算)は計算のボトルネックとなり、計算速度とスケーラビリティを制限しています。近年、機械学習手法が分子動力学シミュレーションの高速化と精度向上に顕著な成功を収めていますが、既存の機械学習モデルの多くは密度汎関数理論(DFT)データベースをトレーニングデータの「真値」として使用しており、その予測精度はDFT自体を超えることができません。DFTは平均場理論として、計算において通常いくつかの化学精度(1 kcal/mol)よりも大きな系統...

燃料調合スケジューリングのための嗜好予測型進化的多目的最適化

好み予測に基づく進化的多目的最適化を用いたガソリン調合スケジューリング 背景紹介 世界エネルギー市場の変化が続く中、ガソリンの生産および調合プロセスは、ますます多くの課題に直面している。ガソリンは石油産業の重要な製品であり、その調合とスケジューリングプロセスは、製品の品質および生産効率に直接影響を与える。ガソリン調合では、製品の仕様および性能要件に基づき、複数の成分を異なる比率で混合して、さまざまなグレードのガソリンを製造する必要がある。この過程では、オクタン価(Octane Number, ON)、リード蒸気圧(Reid Vapor Pressure, RVP)、鉛含有量、硫黄含有量、引火点など、複数の性能指標を満たす必要がある。これにより、厳格な品質管理が求められるだけでなく、ますます厳...