WienerおよびPoissonノイズを伴う確率的マルコフジャンプシステムの最適制御:2つの強化学習アプローチ

WienerおよびPoissonノイズを含む確率Markovジャンプシステムの最適制御:2つの強化学習アプローチ 学術的背景 現代の制御理論において、最適制御は非常に重要な研究領域の一つであり、その目標は、動的システムに対して費用関数を最小化する最適制御戦略を設計することです。確率システムに関して、従来の最適制御手法は通常、システムモデルの完全な情報を必要としますが、この点で現実の適用において大きな限界があります。近年、モデルに依存しない手法としての強化学習(Reinforcement Learning, RL)が、最適制御問題を解決する重要なツールとして注目されています。RLはデータから直接学習することで、最適値関数と最適ポリシーを取得し、ポリシーイテレーション(Policy Iterat...