面向医学图像分割的模型异质半监督联邦学习

面向医学图像分割的模型异质半监督联邦学习

医学影像分割的模型异质半监督联邦学习 背景介绍 医学图像分割在临床诊断中具有至关重要的作用,它帮助医生识别和分析病情。然而,该任务通常面临敏感数据、隐私问题及昂贵的标注费用等挑战。尽管当前研究主要聚焦于个性化协作训练医学分割系统,但忽视了获取分割标注是耗时且费力的。如何在保持本地模型个性化的同时平衡标注成本和分割性能,已成为研究的一个重要方向。因此,本研究引入了一种新颖的模型异质半监督联邦学习框架。 论文来源 这篇论文题为“Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation”,由Yuxi Ma、Jiacheng Wang、Jing Yang和Liansheng Wang共同...

半监督医学图像分割的双重监督网络

半监督医学图像分割的双重监督网络

研究背景和动机 医学图像分割在解剖结构和病变区域的图像分析以及临床诊断中具有重要意义。然而,现有的全监督学习方法依赖于大量标注数据,而医学图像的像素级标注数据获取成本高昂且耗时。为了减轻对标注数据的依赖,半监督学习(SSL)方法逐渐兴起。尽管现有的SSL方法如mean teacher(MT)框架已经取得了不错的效果,但仍然存在诸多局限性。因此,本研究提出了一种双向监督网络(bilateral supervision network,BSNet),以更好地利用无标注的样本,从而提高半监督医学图像分割的性能。 文章来源 本文由Along He、Tao Li、Juncheng Yan、Kai Wang和Huazhu Fu撰写。作者分别来自天津大学网络与数据安全技术重点实验室、南开大学计算机学院、H...