Anti-Fake Vaccine:通过视觉-语义双重退化保护隐私免受换脸攻击

深度伪造与面部隐私保护:Anti-Fake Vaccine的创新研究 背景与研究动机 近年来,深度伪造(Deepfake)技术的发展对个人隐私和社会安全构成了严峻挑战。作为深度伪造技术的一个典型应用,面部替换技术广泛应用于电影制作和计算机游戏,但其潜在风险也愈发显著。面部替换可以将源人脸的身份信息嵌入目标人脸,从而生成具有欺骗性、逼真的合成图像或视频。这种技术的普及使不法分子可以轻松生成未经授权的伪造内容,对受害者的声誉和安全造成重大威胁。 现有防御技术主要分为两类:被动防御(通过检测伪造内容)和主动防御(通过添加干扰来阻止伪造)。然而,主动防御技术在面对复杂的面部替换场景时表现欠佳,尤其是由于身份信息转移涉及更复杂的语义特征提取和合成过程。针对这一问题,Jingzhi Li等人提出了名为“...

面向医学图像分割的模型异质半监督联邦学习

面向医学图像分割的模型异质半监督联邦学习

医学影像分割的模型异质半监督联邦学习 背景介绍 医学图像分割在临床诊断中具有至关重要的作用,它帮助医生识别和分析病情。然而,该任务通常面临敏感数据、隐私问题及昂贵的标注费用等挑战。尽管当前研究主要聚焦于个性化协作训练医学分割系统,但忽视了获取分割标注是耗时且费力的。如何在保持本地模型个性化的同时平衡标注成本和分割性能,已成为研究的一个重要方向。因此,本研究引入了一种新颖的模型异质半监督联邦学习框架。 论文来源 这篇论文题为“Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation”,由Yuxi Ma、Jiacheng Wang、Jing Yang和Liansheng Wang共同...

利用联邦学习检测心音异常的一项多机构合作研究

利用联邦学习检测心音异常的一项多机构合作研究

利用联邦学习检测心音异常的一项多机构合作研究 学术背景 心血管疾病(Cardiovascular diseases, CVDs)已经成为主要的死亡原因之一,特别在老年人口中,心血管健康问题亟待社会关注。早期筛查、诊断和预后管理对于预防住院具有重要意义。心音信号携带丰富的生理和病理信息,通过心音进行CVDs早期诊断具有容易获取、广泛存在和非侵入性等优势。近年来,人工智能(AI)在心音辅助诊断中的应用引起了广泛关注,自动心音听诊技术有助于快速、有效地评估心脏状态。然而,现有研究在应用过程中忽略了数据安全和隐私问题,尤其是在多机构数据合作时。 研究来源 本文由Wanyong Qiu, Chen Quan等人撰写,作者分别来自北京理工大学、日本东京大学教育生理学实验室、英国帝国理工学院等知名学术机构...