基于EPDTNet + -EM的医学图像诊断高级迁移学习与子网架构

学术背景 在当今的医疗环境中,医学影像在疾病诊断、治疗规划和健康管理中扮演着至关重要的角色。然而,传统的医学影像分析方法存在诸多挑战,如过拟合(overfitting)、计算成本高、泛化能力有限以及噪声、尺寸和形状变化等问题。这些挑战导致医学影像的分类和检测精度受限,影响了临床决策的准确性和效率。 为了应对这些挑战,研究者们提出了多种基于机器学习和深度学习的医学影像分析方法。然而,这些方法在处理复杂数据集时仍存在局限性,尤其是在计算效率和分类精度方面。因此,本文提出了一种名为EPDTNet+-EM(Efficient Parallel Deep Transfer Subnet + Explainable Model)的新型医学影像处理框架,旨在通过增强的迁移学习和并行子网架构,提高医学影像中...