大规模基因组测序研究中的高效存储与回归计算

随着大规模人口生物样本库的日益普及,全基因组测序(Whole Genome Sequencing, WGS)数据在人类健康和疾病研究中的潜力得到了显著提升。然而,WGS数据的庞大计算和存储需求给研究机构,尤其是资金不足的机构或发展中国家的研究人员带来了巨大挑战。这种资源分配的不平等限制了前沿遗传学研究的公平性。为了解决这一问题,Manuel A. Rivas和Christopher Chang等人开发了新的算法和回归方法,显著减少了WGS研究的计算时间和存储需求,特别是针对罕见变异的处理。 论文来源 这篇论文由Manuel A. Rivas和Christopher Chang共同撰写。Rivas来自斯坦福大学生物医学数据科学系,Chang则供职于Grail Inc.。该论文于2025年2月1...

计算分数阶微分方程Lyapunov指数的最低成本研究

背景介绍 分数阶微分方程(Fractional Differential Equations, FDEs)是传统微积分的推广,允许微分和积分的阶数为非整数。这一数学框架在描述复杂动力学行为时表现出独特的优势,特别是在混沌系统和非线性系统的研究中。Lyapunov指数(Lyapunov Exponents, LEs)是衡量系统对初始条件敏感性的关键指标,常用于判断系统是否处于混沌状态。然而,计算分数阶混沌系统的Lyapunov指数通常计算成本较高,尤其是在高维系统中。因此,如何降低计算成本并提高计算效率成为分数阶混沌系统研究中的一个重要问题。 本文由Shuang Zhou, Qiyin Zhang, Shaobo He和Yingqian Zhang共同撰写,旨在通过Adomian分解法(Ado...

DiMOn:学习偏微分方程几何依赖解算子的可扩展框架

引言 近年来,利用数值方法求解偏微分方程(Partial Differential Equations, PDEs)已在工程和医学等广泛学科中扮演了重要角色。这些方法在拓扑和设计优化以及临床预测中的应用已显示出显著成效。然而,由于在多种几何体上进行多次问题求解所需的计算成本非常高,导致这些方法在很多场景下变得无法负担。因此,开发能够在不同几何条件下提高PDE求解效率的方法,成为了近年科学机器学习领域的一个研究热点。 论文背景与来源 《A Scalable Framework for Learning the Geometry-Dependent Solution Operators of Partial Differential Equations》这篇文章由Minglang Yin、Nic...

适用于基因组关联研究多性状分析的自适应鲁棒方法

多特征基因组关联研究的自适应鲁棒方法 摘要: 过去十年间的基因组关联研究(GWAS)已识别出数千种与人类性状或疾病相关的遗传变异。然而,许多性状的遗传度仍未能完全解释。传统的单一性状分析方法过于保守,而多性状方法通过整合多个性状的关联证据来提高统计力。GWAS总结性统计数据通常是公开可获取的,因此只使用总结性统计的方法具有更大的使用前景。为了解决已开发的多性状分析方法中存在的不一致表现、计算效率低、并且在考虑大量性状时出现数字问题,我们提出了一种自适应Fisher方法用于总结性统计的多性状分析(MTAFS),这是一种计算效率高并且统计力鲁棒的方法。 研究背景: 基因组关联研究(GWAS)在遗传变异与复杂疾病之间的相关性研究中发挥了重要作用。然而,当一个遗传变异与多个性状相关时,采用单一性状分...