使用模型投影的联邦学习进行多中心疾病诊断
使用模型投影的联邦学习进行多中心疾病诊断 背景介绍 随着医学影像技术的快速发展,基于自动化诊断方法的研究在单中心数据集上表现出良好的性能。然而,这些方法在实际应用中往往难以泛化到其他医疗机构的数据。主要原因是这些方法通常假设不同医疗中心的数据是独立同分布(IID)的,而实际上不同中心由于使用不同的扫描仪和成像参数,导致数据分布非独立同分布(Non-IID)。此外,不同中心诊断的患者数量和种类也存在较大差异。因此,多中心的数据具有异质性,无法通过集中化学习(Centralized Learning)有效解决这一问题。 近年来,联邦学习(Federated Learning,FL)作为一种去中心化框架,为多中心协同训练全球模型提供了可能,同时还保留了各中心患者数据的隐私。然而,Non-IID数据...