跨九种模态的生物医学对象联合分割、检测和识别的基础模型

解码生物医学图像分析的未来:多模态联合分割、检测和识别的基础模型 背景介绍 在生物医学研究中,图像分析已成为推动生物医学发现的重要工具,能够跨越从亚细胞器到器官层面的多尺度研究。然而,传统的生物医学图像分析方法大多将分割(segmentation)、检测(detection)和识别(recognition)作为独立的任务分别处理,这种割裂式的方法不仅限制了任务间交互的信息共享,也增加了处理复杂多样的生物医学图像数据的难度。 例如,传统的分割方法通常依赖人工指定的边界框(bounding box)来标注感兴趣目标的区域,这对形状不规则或数量庞大的目标(如病理全片图像中的所有细胞)来说是具有挑战性的。此外,忽略目标检测和语义识别(metadata-like semantic informatio...

使用模型投影的联邦学习进行多中心疾病诊断

使用模型投影的联邦学习进行多中心疾病诊断

使用模型投影的联邦学习进行多中心疾病诊断 背景介绍 随着医学影像技术的快速发展,基于自动化诊断方法的研究在单中心数据集上表现出良好的性能。然而,这些方法在实际应用中往往难以泛化到其他医疗机构的数据。主要原因是这些方法通常假设不同医疗中心的数据是独立同分布(IID)的,而实际上不同中心由于使用不同的扫描仪和成像参数,导致数据分布非独立同分布(Non-IID)。此外,不同中心诊断的患者数量和种类也存在较大差异。因此,多中心的数据具有异质性,无法通过集中化学习(Centralized Learning)有效解决这一问题。 近年来,联邦学习(Federated Learning,FL)作为一种去中心化框架,为多中心协同训练全球模型提供了可能,同时还保留了各中心患者数据的隐私。然而,Non-IID数据...