多视角变换网络(MVTN):3D理解的最新方法

多视角变换网络(MVTN):3D理解的最新方法

多视角变换网络(MVTN)推动3D理解研究的新进展 背景与研究动机 在计算机视觉领域,三维(3D)数据的深度学习研究近年来取得了显著进展,尤其是在分类、分割和检索任务中。然而,如何有效利用三维形状信息仍然是一个重要的挑战。常用的三维数据表示方法包括点云(Point Clouds)、网格(Meshes)和体素(Voxels)。此外,另一种流行的策略是通过多视角投影技术,将3D对象或场景渲染成多个二维(2D)视图。这种方法与人类视觉系统接收的图像流更为相似,并且可以充分利用2D深度学习的先进成果。 多视角方法如MVCNN(Su et al., 2015)通过渲染固定视点的2D图像,显著提升了3D形状分类的性能。然而,这些方法普遍依赖固定的视角配置(如随机采样或预定义视点),难以根据具体任务动态调...

大语言模型利用电子健康记录中识别健康的社会决定因素

大语言模型利用电子健康记录中识别健康的社会决定因素 背景及研究动机 健康社会决定因素(Social Determinants of Health, SDOH)对患者的健康结果具有重要影响。然而,在电子健康记录(EHR)结构化数据中,这些因素的记录往往不完整或缺失。大语言模型(Large Language Models, LLMs)有望从EHR的叙述性文本中高通量提取SDOH,以支持研究和临床护理。然而,类别不平衡和数据限制为这种稀疏记录的关键信息带来了挑战。本文旨在探讨使用LLMs从EHR叙述性文本中提取六种SDOH类别(就业、住房、交通、父母身份、关系和社会支持)的最佳方法。 研究来源 这项研究由Harvard Medical School的Mass General Brigham人工智能...