利用大型语言模型评估社交媒体上对胰高血糖素样肽-1受体激动剂的公众看法

在全球范围内,肥胖的流行趋势不断上升,给公共卫生带来了重大的影响。肥胖独立地与心血管疾病的发病率和死亡率相关联,估计每年将为卫生系统带来超过2000亿美元的经济负担。近年来,胰高血糖素样肽-1(GLP-1)受体激动剂因其在体重减轻和心血管风险降低中独立于糖尿病的作用而成为改变实践的治疗方案。在这一背景下,史丹福大学的Sulaiman Somani、Sneha S. Jain、Ashish Sarraju、Alexander T. Sandhu、Tina Hernandez-Boussard和Fatima Rodriguez等人展开了一项关于GLP-1受体激动剂在社交媒体上公众认知的研究,并在《Communications Medicine》2024年发布了他们的研究成果。 该研究采用了大型语...

使用异构图卷积网络进行电子健康记录文本分类的增强混合方法

使用异构图卷积网络进行电子健康记录文本分类的增强混合方法

EHR-HGCN:一种用于电子健康记录文本分类的新型混合异构图卷积网络方法 学术背景介绍 随着自然语言处理(NLP)的迅速发展,文本分类已经成为该领域一个重要的研究方向。文本分类不仅帮助我们理解文献背后的知识,还在生物医学文本,包括电子健康记录(Electronic Health Records, EHR)等领域有着广泛的应用。现有的研究主要集中在基于双向变压器的编码表示方法(如BERT)和卷积神经网络(CNN)的深度学习方法。然而,这些方法在处理医学长文本时往往面临输入长度的限制和高计算资源的需求。与此同时,针对文本分类的代表性CNN方法往往只提取了附近上下文特征,忽略了文本中更长范围的关系。 为了解决这些问题,近年来异构图卷积网络(Heterogeneous Graph Convolut...

将大型语言模型和知识图谱统一起来

统一大语言模型与知识图谱 背景 近年来,自然语言处理和人工智能领域涌现了大量研究成果,其中,大语言模型(Large Language Models, LLMS)如 ChatGPT 和 GPT-4 表现出色。然而,尽管这些模型具有出色的泛化能力,常常因其黑箱性质无法有效捕捉和访问事实知识而受到批评。另一方面,知识图谱(Knowledge Graphs, KGs)如 Wikipedia 和 Huapu 通过结构化形式存储了大量事实知识,但构建和演化知识图谱的过程却非常复杂。因此,研究人员提出将大语言模型与知识图谱相结合,利用两者的优势以实现互补。 来源 本文发表在《IEEE Transactions on Knowledge and Data Engineering》2024年7月第36卷第7期...

大语言模型利用电子健康记录中识别健康的社会决定因素

大语言模型利用电子健康记录中识别健康的社会决定因素 背景及研究动机 健康社会决定因素(Social Determinants of Health, SDOH)对患者的健康结果具有重要影响。然而,在电子健康记录(EHR)结构化数据中,这些因素的记录往往不完整或缺失。大语言模型(Large Language Models, LLMs)有望从EHR的叙述性文本中高通量提取SDOH,以支持研究和临床护理。然而,类别不平衡和数据限制为这种稀疏记录的关键信息带来了挑战。本文旨在探讨使用LLMs从EHR叙述性文本中提取六种SDOH类别(就业、住房、交通、父母身份、关系和社会支持)的最佳方法。 研究来源 这项研究由Harvard Medical School的Mass General Brigham人工智能...