RD-Net:通过视神经头的结构特征预测青光眼的残差-密集网络
使用残差密集网络 (RD-Net) 进行基于视神经头结构特征的青光眼预测 背景与研究目的 青光眼是全球范围内导致失明的主要原因之一,被称为“视力的无声窃贼”。其主要特征是视神经(Optic Nerve Head, ONH)的进行性损伤,可能在患者察觉到其视力受损之前已经造成不可逆转的视觉丧失。据统计,青光眼是继白内障之后的第二大致盲原因。早期对青光眼的筛查与准确诊断,对管理疾病进展及维持患者的视觉功能至关重要。 临床上,青光眼的诊断主要基于以下结构和功能性测试:眼内压(Intraocular Pressure, IOP)测量、视神经头的结构评估,以及视野检测。然而,视野检测通常需要昂贵的设备,难以普及到基层医疗机构。因此,通过分析视神经头的结构特征,例如杯盘比(Cup-to-Disc Rat...