利用基于细胞学的深度学习预测未知原发性癌症的肿瘤起源

利用基于细胞学的深度学习预测未知原发性癌症的肿瘤起源

背景介绍 肿瘤未明原发癌(Cancer of Unknown Primary, CUP)是一类通过组织病理学确认为恶性转移但无法通过常规基线诊断方法明确原发部位的恶性疾病。CUP在临床中具有较大的诊断挑战和治疗难度,被认为占所有人类癌症的3-5%。其中,腺癌是最常见的病理类型,其次是鳞状细胞癌和未分化癌。尽管采用了一系列联合化疗治疗手段,患者的整体预后依然极差,仅有20%的患者可以达到10个月的中位生存期。CUP的一个显著特征是其早期扩散、侵袭性较强的临床表现和多器官受累的特点。 免疫组化试验(Immunohistochemistry, IHC)通常被用作预测CUP可能原发部位的关键手段,然而,通过大约20种不同免疫染色单元组合,仅不到30%的CUP病例能够被精确定位。因而,准确预测原发部位...