基于扭转流匹配的蛋白质侧链包装模型FlowPacker

蛋白质的三维结构由其氨基酸序列决定,而蛋白质的功能则高度依赖于其三维结构。蛋白质的侧链构象(side-chain conformations)在蛋白质折叠、蛋白质-蛋白质相互作用以及蛋白质设计(de novo protein design)中起着至关重要的作用。准确预测蛋白质侧链的构象是理解蛋白质折叠机制、设计新型蛋白质以及研究蛋白质相互作用的关键。然而,传统的基于物理的模型(physics-based modeling)依赖于经验评分函数(empirical scoring functions)、离散旋转库(discrete rotamer libraries)和马尔可夫链蒙特卡罗(MCMC)采样,这些方法往往由于搜索效率低下和评分函数的不准确性而难以达到理想的效果。 近年来,人工智能在蛋...

蛋白质结构预测:挑战、进展与研究范式的转变

蛋白质结构预测:挑战、进展及研究范式的变化 蛋白质结构预测是一个吸引了生物化学、医学、物理学、数学和计算机科学等多个领域研究者的重要跨学科研究课题。研究者们采取了多种研究范式去解决同一个结构预测问题:生物化学家和物理学家试图揭示蛋白质折叠的原理;数学家,尤其是统计学家,通常从假设给定目标序列的蛋白质结构概率分布开始,然后找到最可能的结构;而计算机科学家将蛋白质结构预测视为一个优化问题——寻找具有最低能量的结构构象或最小化预测结构与天然结构之间的差异。最近,深度学习在蛋白质结构预测中也取得了巨大成功。在这篇综述中,本文呈现了一项对蛋白质结构预测努力的调查。我们比较了不同领域研究者采用的研究范式,重点是深度学习时代研究范式的转变。 作者简介及论文出处 本文由Bin Huang, Lupeng K...