诱发成分分析(ECA):基于GLM正则化对功能超声信号的分解
诱发成分分析(ECA):基于GLM正则化对功能超声信号的分解 背景介绍 功能性神经影像数据分析旨在揭示大脑活动的空间和时间模式。现存的数据分析方法主要分为两类:完全基于数据的分析方法和依赖于先验信息的方法,例如用刺激时间程来分析脑活动。一般来说,使用刺激信号可以帮助识别活跃的大脑区域,但大脑对刺激的反应往往表现出非线性和时间变化的特点。因此,完全依赖刺激信号来描述大脑的时间反应可能导致对大脑功能的理解比较局限。 在此背景下,本文作者提出了一种新技术,称为诱发成分分析(Evoked Component Analysis,简称ECA),其利用了先验信息作为指导因子,通过在低阶分解框架中引入广义线性模型(General Linear Model,GLM)设计矩阵作为正则项,达到了在空间和时间上分解...