自适应复合固定时间强化学习优化的非线性系统控制及其在智能船舶自动驾驶上的应用

智能船舶自动驾驶的非线性固定时间强化学习优化控制研究 近年来,智能自动驾驶技术逐渐成为自动化控制领域的研究热点之一。在复杂的非线性系统中,优化控制策略的设计,尤其是在固定时间内实现系统稳定性和性能优化方面,是控制工程师和研究人员面临的重要挑战之一。然而,现有的固定时间控制理论在实现系统状态收敛时,往往忽略了资源利用效率和平衡问题,这可能导致过度补偿或欠补偿的现象,从而使系统的稳态误差增加。此外,对于如何在时间限定内实现非线性不确定性估计误差的最小化,相关研究依然较少。因此,本研究旨在提出一种自适应复合固定时间强化学习优化控制解决方案,进一步解决这一关键问题。 研究背景及目的 固定时间控制理论自提出以来,由于收敛时间不依赖于初始状态的特点,其应用得到了广泛关注。相比有限时间控制方法,固定时间控...

随机非线性时变系统有限时间稳定性与不稳定性定理的新进展

关于随机非线性时变系统有限时间稳定性和不稳定性定理的新成果 1. 研究背景与意义 稳定性理论是系统理论和工程应用中的核心内容,也是系统分析和综合中最基础的考虑之一。在稳定性理论中,最常用的两个概念是渐近稳定性(asymptotic stability)和有限时间稳定性(finite-time stability)。渐近稳定性描述了系统状态在时间趋于无穷时的行为,而有限时间稳定性则关注系统在有限时间内的瞬态性能。 许多工程问题中,有限时间稳定性相比渐近稳定性显得更为重要,例如在机器人操控的轨迹控制和水下飞行器的姿态控制等桥接性任务中,人们更加注重系统在有限时间内到达期望状态的能力。具有有限时间稳定性的系统不仅表现出更好的鲁棒性,而且具有更快的收敛速度。然而,目前已有的研究在有限时间稳定性方面仍...