Seaformer++: Squeeze-Enhanced Axial Transformer for Mobile Visual Recognition

SEAFormer++ - An Efficient Transformer Architecture Designed for Mobile Visual Recognition Research Background and Problem Statement In recent years, the field of computer vision has undergone a significant shift from Convolutional Neural Networks (CNNs) to Transformer-based methods. However, despite Vision Transformers demonstrating excellent glob...

Boosting Few-Shot Semantic Segmentation with Prior-Driven Edge Feature Enhancement Network

Boosting Few-Shot Semantic Segmentation with Prior-Driven Edge Feature Enhancement Network

A New Approach to Enhance Few-Shot Semantic Segmentation: Prior-Driven Edge Feature Enhancement Network In the field of artificial intelligence, semantic segmentation is a core technology in computer vision that aims to assign semantic category labels to every pixel in an image. However, traditional semantic segmentation methods rely on large amoun...

RADIFF: Controllable Diffusion Models for Radio Astronomical Maps Generation

RaDiff: Controllable Diffusion Models for Radio Astronomical Map Generation” Comprehensive Academic News Analysis Background Introduction With the near completion of the Square Kilometer Array (SKA) telescope, radio astronomy is poised for revolutionary advancements in the study of the universe. Boasting unprecedented sensitivity and spatial resolu...

Weakly Supervised Semantic Segmentation of Driving Scenes Based on Few Annotated Pixels and Point Clouds

Few Annotated Pixels and Point Cloud Based Weakly Supervised Semantic Segmentation of Driving Scenes Background and Research Issues Semantic segmentation, a critical task in computer vision, has extensive applications in domains like autonomous driving. However, traditional fully-supervised semantic segmentation methods require exhaustive pixel-lev...

Pulling Target to Source: A New Perspective on Domain Adaptive Semantic Segmentation

A New Perspective on Domain Adaptive Semantic Segmentation: T2S-DA Study Background and Significance Semantic segmentation plays a crucial role in computer vision, but its performance often relies on extensive labeled data. However, acquiring labeled data is costly, especially in complex scenarios. To address this, many studies turn to synthetic da...

Unsupervised Domain Adaptive Segmentation Algorithm Based on Two-Level Category Alignment

Unsupervised Domain Adaptive Segmentation Algorithm Based on Two-Level Category Alignment

Semantic segmentation aims to predict category labels for each pixel in an image (Liu et al., 2021; Wang et al., 2021) and is widely used in scene understanding, medical image analysis, autonomous driving, geographic information systems, and augmented reality (Strudel et al., 2021; Sun et al., 2023). Although the development of deep neural networks...

Stacked Deconvolutional Network for Semantic Segmentation

Stacked Deconvolutional Network for Semantic Segmentation

Stacked Deconvolutional Network for Semantic Segmentation Introduction Semantic segmentation is a critical task in the field of computer vision, aiming to classify each pixel in an image and predict its category. However, existing Fully Convolutional Networks (FCNs) have limitations in handling spatial resolution, often leading to problems such as ...

Weakly Supervised Semantic Segmentation via Alternate Self-Dual Teaching

Weakly Supervised Semantic Segmentation via Alternate Self-Dual Teaching

Weakly Supervised Semantic Image Segmentation via Alternate Self-Dual Teaching Background Introduction With the continuous development of the computer vision field, semantic segmentation has become an important and active research direction. Traditional semantic segmentation methods rely on manually labeled pixel-level tags; however, obtaining thes...