相互アンカーコントラスト学習を活用した少数ショット関係抽出の研究
インスタンス-ラベルダイナミクスを活用した相互アンカーコントラスト学習による少数ショット関係抽出 学術的背景 自然言語処理(Natural Language Processing, NLP)の分野において、関係抽出(Relation Extraction, RE)は、テキストからエンティティ間の関係を識別し抽出するための基本的なタスクです。しかし、従来の教師あり学習手法は大量のアノテーションデータに依存しており、実際の応用ではアノテーションデータの不足がモデルの性能を大きく制約しています。この課題に対応するため、少数ショット関係抽出(Few-Shot Relation Extraction, FSRE)が登場し、少量のアノテーションデータでモデルを訓練し、限られたサンプルでも正確にエンティテ...