深層学習敗血症予測モデルがケアの質と生存率に与える影響

深層学習敗血症予測モデルが看護の質と患者の生存状況に与える影響 研究背景 敗血症は感染によって引き起こされる全身性炎症反応で、毎年約4800万人が影響を受け、そのうち約1100万人が死亡しています。敗血症の多様性により、早期の識別は非常に困難です。早期介入には液体復旧、抗生物質管理、感染源の制御などの治療が含まれ、疾患初期段階での効果は顕著です。したがって、予測分析を通じて敗血症の早期検出を向上させることは重要です。 研究の出典 この研究は、Aaron Boussina、Supreeth P. Shashikumar、Atul Malhotra、Robert L. Owens、Robert El-Kareh、Christopher A. Longhurst、Kimberly Quintero...