基于互信息的虚拟现实存在感神经生理特征研究

虚拟现实中的存在感:神经生理学标记的探索与验证 背景介绍 近年来,虚拟现实(Virtual Reality, VR)技术在医学、训练和康复等领域得到了广泛应用。VR的核心在于用户的“存在感”(Sense of Presence),即用户在虚拟环境中感受到的“身临其境”的体验。然而,目前对于存在感的评估主要依赖于主观问卷,如ITC-SOPI(ITC-Sense of Presence Inventory)和SUS(Slater-Usoh-Steed)问卷。这些方法存在主观偏差,且难以捕捉用户的无意识反应。因此,开发一种基于神经生理信号的客观评估方法成为研究的迫切需求。 本研究的目的是通过多模态生理信号(如脑电图EEG、心电图ECG和皮肤电活动EDA)来识别与VR环境中存在感相关的神经生理标记,...

基于互信息的多模态情感分析解耦表示学习

多模态情感分析中的互信息解耦表示学习:一项创新研究 学术背景 随着社交媒体的快速发展,用户生成的多媒体内容(如推文、视频等)数量急剧增加。这些多媒体数据通常包含三种模态:视觉(图像)、声学(语音)和文本。这些数据中隐含着丰富的情感信息,如何自动分析这些情感信息成为了一个重要挑战。多模态情感分析(Multimodal Sentiment Analysis, MSA)旨在利用多种信号来识别潜在的情感和情绪。然而,多模态表示学习是这一领域的核心挑战之一,即如何将不同模态的特征有效地整合为统一的表示。 近年来,研究者提出了两种主要方法来解决这一问题:一种方法是将多模态特征分解为模态不变(modality-invariant)和模态特定(modality-specific)的部分;另一种方法则是利用互...

水平联邦学习的成本高效特征选择

水平联邦学习中高效特征选择的新方法研究 近年来,随着联邦学习(Federated Learning, FL)逐渐成为一种保护数据隐私的分布式机器学习方法,如何在不同用户(即客户端)之间共享信息以训练高效的全局模型,吸引了广泛的关注。在水平联邦学习(Horizontal Federated Learning, HFL)中,所有客户端共享相同的特征空间,但各自的数据样本不同。然而,数据特征的冗余和维度灾难问题严重影响了模型的性能和训练效率。为此,特征选择(Feature Selection, FS)作为机器学习中的一种重要预处理技术,在去除冗余特征和增强模型性能方面具有突出的作用。本研究针对HFL场景下的特征选择问题提出了新方法,以解决这一领域的关键挑战。 论文来源 本论文题为 “Cost-Ef...

平衡特征对齐与统一性用于小样本分类

平衡特征对齐与统一性用于小样本分类

平衡特征对齐与统一性来解决小样本分类问题 背景与动机 少样本学习(Few-Shot Learning, FSL)的目标是在只有少量新类别(novel classes)样本的条件下,正确地对新样本进行识别。现有的少样本学习方法主要通过最大化特征表示与其对应标签之间的信息,来学习从基础类别(base classes)中可转移的知识。然而,这种方法可能会出现“监督崩溃”(supervision collapse)的问题,因为它对基础类别存在偏差。本文提出了一种解决方案,通过保留数据的内在结构,并学习一种适用于新类别的广义模型。本研究依据信息最大化原则,最大化样本与其特征表示之间以及特征表示与其类别标签之间的互信息(mutual information, MI),以在特征表示中平衡类特异性信息的捕获...