基于多功能连接图卷积网络的自闭症谱系障碍识别

自闭症谱系障碍(ASD)是一种以重复行为、狭窄的兴趣和严重的社交互动缺陷为特征的异质性疾病,意即在不同个体中表现差异较大。中国学龄前儿童自闭症的患病率约为1%。目前,自闭症的诊断依赖于诊断量表和医生询问,这种主观性强的评估方式极大地影响了诊断结果,给医疗、社会和教育护理带来了重大挑战。本文通过结合图卷积网络(Graph Convolutional Networks,GCN)与静态功能磁共振成像(rs-fMRI)数据,提出一种多功能连接基图卷积网络(mfc-GCN)框架,以实现对自闭症谱系障碍(Autism Spectrum Disorder,ASD)的早期诊断。本文由Chaoran Ma、Wenjie Li、Sheng Ke、Jidong Lv、Tiantong Zhou和Ling Zou共...