基于知识蒸馏的轻量级卷积神经网络用于无创胶质瘤分级
非侵入性胶质瘤分级研究综述:基于知识蒸馏的轻量级卷积神经网络 背景介绍 胶质瘤是中枢神经系统的主要肿瘤,早期检测非常重要。世界卫生组织(WHO)将胶质瘤分为Ⅰ至Ⅳ级,Ⅰ和Ⅱ级为低级胶质瘤(LGG),Ⅲ和Ⅳ级为高级胶质瘤(HGG)。准确分类胶质瘤对于生存率评估至关重要。 磁共振成像(MRI)是医学领域诊断和治疗胶质瘤的常用方法。目前,许多学者应用机器学习和深度学习方法进行胶质瘤分类。例如,Zacharaki等人成功应用支持向量机(SVM)算法在MRI图像中分类胶质瘤。而Fatemeh等人采用卷积神经网络(CNN)对MRI图像中的胶质瘤进行分类。遗憾的是,这些研究多集中在提高分类精度,但高参数的CNN架构难以在实际医疗环境中应用。此外,由于胶质瘤数据集较小,他们只能使用具有较少参数的CNN,因而...