Multimodal Deep Learning Improves Recurrence Risk Prediction in Pediatric Low-Grade Gliomas

Application of Deep Learning in Postoperative Recurrence Prediction for Pediatric Low-Grade Gliomas Background Pediatric Low-Grade Gliomas (PLGGs) are one of the most common types of brain tumors in children, accounting for 30%-50% of all central nervous system tumors in children. Although the prognosis of PLGGs is relatively favorable, the risk of...

Improving the Segmentation of Pediatric Low-Grade Gliomas through Multitask Learning

Improved Segmentation of Pediatric Low-Grade Gliomas Through Multitask Learning Background Introduction The segmentation of pediatric brain tumors is a critical task in tumor volume analysis and artificial intelligence algorithms. However, this process is time-consuming and requires the expertise of neuroradiologists. Although significant research ...